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Special types of number-theoretic relations, termed multiplicative congruential

generators (MCGs), exhibit an intrinsic sublattice structure. This has consider-

able implications within the crystallographic realm, namely for the coordinate

description of crystal structures for which MCGs allow for a concise way of

encoding the numerical structural information. Thus, a conceptual framework is

established, with some focus on layered superstructures, which proposes the use

of MCGs as a tool for the quantitative description of crystal structures. The

multiplicative congruential method eventually affords an algorithmic generation

of three-dimensional crystal structures with a near-uniform distribution of

atoms, whereas a linearization procedure facilitates their combinatorial

enumeration and classification. The outlook for homometric structures and

dual-space crystallography is given. Some generalizations and extensions are

formulated in addition, revealing the connections of MCGs with geometric

algebra, discrete dynamical systems (iterative maps), as well as certain

quasicrystal approximants.

1. Introduction

As the Pythagoreans would have put it: all is number.

Among many other things, the geometers of ancient Greece

put a particular emphasis on the proportions between

numbers, rather than regarding them as singular entities,

which ultimately led them to the discovery of incommensurate

measures of irrational length ratio.

The scope of this work is to convey the idea of proportion

from number theory into crystallography.

Whereas the geometrical notion of (in)commensurate

measures is already well established among crystallographers,

the number-theoretic one, originating from the fundamental

relation of modular arithmetics, i.e. the congruence

y � mx ðmod MÞ; ð1Þ

seems to be far less explored. We argue that the integers m and

M can be interpreted as two independent scales of spatial

extension, i.e. translational periods, and that there lies some

advantage in doing so. The successive operations of multi-

plication and division with a remainder, i.e. up-scaling and

down-projecting, define a mapping between a pair ðx; yÞ of

coordinates, which, upon iteration, entails a cyclic behaviour –

that of a multiplicative congruential generator (MCG).

Applied to the coordinate description of crystal structures,

this observation sheds light on rather subtle interrelations

between a crystal structure’s atomic coordinates – in some way

matching the symmetry of the spatial arrangement of atoms, in

some other ways extending it – which may be employed to

compactify its numerical representation, therefore yielding

what we call a quantitative crystal structure descriptor (QCSD).

1.1. General remarks

The following paragraphs give a comprehensive survey of

MCGs, their sublattice structure and cycle representation. The

presentation is restricted to features deemed essential for an

understanding of the remainder of this paper, which covers

a variety of distinct topics related to MCGs. For a detailed

account of MCGs and their applications in crystallography see

Hornfeck & Harbrecht (2009).

Comparatively novel concepts are preferably introduced by

means of simple, well chosen examples. Hence, the previous

analysis of MCGs was intentionally restricted to the special

case of planar similar sublattices of hexagonal and square

symmetry, which is generalized and extended in Appendix A.

Some general mathematical properties of similar sublattices of

planar lattices are described by Baake et al. (2011). Many of

the introductory statements are mentioned here for the first

time, tailored to clarify the previous knowledge, with an

emphasis on a somewhat intuitive understanding of the

fundamental ideas.

1.2. Multiplicative congruential generators

An MCG is defined by the recurrence relation

Znþ1 � mZn ðmod MÞ ð2Þ

where m;M 2 Z, with M>m> 0, and Zi 2 Z=MZ. The set

Z=MZ ¼ f0; 1; . . . ;M � 1g is known as the residue class ring

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5013&bbid=BB50


to the modulus M. The integers m and M are called the

multiplier and the modulus of an MCG, respectively. Other

symbols may be used in order to emphasize special multipliers

(e.g. � or �) or special moduli (e.g. T or Q). A given MCG

describes a one-to-one mapping of the set Z=MZ onto itself

and thus is a permutation which may be represented in

different ways. Take, for example, the MCG with m ¼ 3 and

M ¼ 7 which results in the mapping of the set

f0; 1; 2; 3; 4; 5; 6g onto itself. The permutation may be repre-

sented either in two-line matrix notation

�
0 1 2 3 4 5 6

0 3 6 2 5 1 4

�
; ð3Þ

or as the tuple ð0; 3; 6; 2; 5; 1; 4Þ, or as a decomposition into a

product of disjoint cycles

ð0Þ ð1 3 2 6 4 5Þ; ð4Þ

of length ‘ ¼ 1 and ‘ ¼ 6, respectively, or via the permutation

matrix

Pð3; 7Þ ¼

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA
,

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

0
BBBBBBBB@

1
CCCCCCCCA
:

ð5Þ

While the cycle notation of a permutation has the advantage

of being concise, its matrix representation exhibits an other-

wise hidden pattern, which is even more impressive when one

makes the graphical substitutions 0! � and 1! �. One can

clearly discern a regular, grid-like pattern, which reveals the

sublattice structure of an MCG.

1.3. Sublattice structure of MCGs

The sublattice structure is also apparent when one is

transforming the cycle representation of equation (4) to the

point set

pð3; 7Þ ¼

�
ð0; 0Þ;

�
1

7
;

3

7

�
;

�
3

7
;

2

7

�
; . . . ;

�
5

7
;

1

7

��
ð6Þ

by making a pairwise and circular overlapping combination of

successive cycle elements with a subsequent division by the

modulus M in order to obtain fractional coordinates. Drawn

inside the frame of a symmetry-adapted unit cell relates this

special MCG to the lattice–sublattice transformation of a

hexagonal basic lattice to one of its similar sublattices of index

7 (Fig. 1, left). The successive shift in the ðx; yÞ coordinates,

encoded in the MCG, is equivalent to a discrete, periodic

movement on the surface of a torus, constructed from the

sublattice unit cell by gluing together pairs of parallel edges

preserving their orientation, i.e. imposing periodic boundary

conditions (Fig. 1, right).

1.4. Cycle representation of MCGs

Any MCG has its corresponding cycle representation, of

which

ðZi1Zi2 . . . Zi‘i
Þ

n
i¼1 ð7Þ

is a general notation [with ‘i the length of the ith cycle and n

the total number of cycles; cf. equation (4) for a special case].

Its most important feature within a crystallographic context is

due to a previously described one-to-one correspondence

between number-theoretic and crystallographic notions: most

importantly between the set of crystallographic orbits, asso-

ciated with a lattice–sublattice transformation of given index

M, and a cycle representation, as induced by the action of an

MCG with modulus M. In particular, the decomposition into a

product of disjoint cycles resembles the splitting of sublattice

sites into a set of crystallographic orbits (Hornfeck &

Harbrecht, 2009), with the MCG-induced permutation of

lattice-point coordinates preserving the point-group symmetry

of the planar lattice.

2. Conceptual framework

A generally accepted definition of what should be regarded as

a QCSD is missing and its derivation appears to be a non-

trivial task as well.

In our opinion, a structural descriptor is the result of logical

reasoning according to some previously defined scheme or

algorithm and applied to a given molecular or crystal struc-

ture, which covers some essential chemical facts about it. The
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Figure 1
Sublattice structure of MCGs. Left: a lattice � (here a hexagonal one)
with lattice parameter a� and a like-oriented sub- and superlattice pair,
�0 and �, for which a�0 > a� > a�, such that the unit mesh areas Ai are in
the ratio A�0 : A�: A� ¼ M: 1: M�1, where M is the sublattice index. Right:
orthonormal redrawing of the superlattice �, emphasizing the sequential
generation of lattice points, by the action of an MCG with parameters m
and M, according to the sublattice transformation �! �0. Note that
there is a sublattice structure for any choice of m and M (with respect to
their admissible values; cf. x1.2), but that not every sublattice is primitive
nor can it be embedded, under affine transformations of �, as a (similar)
sublattice of high, i.e hexagonal or square, symmetry. The alternate
movements along the two basic vectors of �0 define a shift vector r, which
in the present case is given as r ¼ ð1=7; 3=7Þt�0 ¼ ð0; 1Þt� ¼ ð1; 3Þt� in its
respective reference frames.

(5)



vagueness of this definition allows one to summarize a great

number of distinct concepts around the general idea of

encoding structural information in some type of cipher, which

in succession represents a suitable way to store, analyse or

communicate the essential qualitative and quantitative

features of a structure without referring to all of its details.

In the following we illustrate the rationale behind the

suggested use of MCGs as QCSDs, putting a special emphasis

on the principles and practice of finding suitable structural

candidates.

2.1. Crystal structure descriptors

We choose to follow two complementary strategies:

(i) to review some basic ideas about structural descriptors

employing concepts originally arising from molecular chem-

istry, and

(ii) to mention those crystal structure descriptors already

established, but distinct from the ones we imagine and

propose.

Everything is somewhat easier for molecules. Arguably the

simplest structure descriptor of a molecule is its sum formula,

encoding the information about the arithmetical proportions

in which elements combine, i.e. a molecule’s composition. On

the next level, the structural formula of a molecule describes

the mutual topological connection of atoms in a molecule,

i.e. its constitution. At yet another level the geometrical

arrangement of a molecule’s atoms in space is accounted for,

i.e. their configuration and conformation (Kerber et al., 2004).

From this it is clear that there exists a hierarchy of structural

representations, differing in their respective information

content, partially continuing to even higher levels of repre-

sentations, as is the case for proteins where the linear

sequence of amino acids subsequently determines its primary,

secondary and tertiary structure. At every level of repre-

sentation there may exist distinct types of structural descrip-

tors. However, most of them are qualitative in nature, which

suffices for most ‘null-dimensional’ molecules but certainly

not for three-dimensional crystals.

For crystals, physical entities like the packing fraction or the

number of formula units in a unit cell may act as a QCSD, and

indeed are used for this purpose, sometimes extended by

qualitative information like in the Pearson symbol. Interesting

in their own right are topological descriptors, either as the

topological indices of chemical graph theory derived from the

scaffold of molecular structures (e.g. the famous Wiener index;

Wiener, 1947), or as geometrical descriptors derived from the

quotient graphs of crystal structures (e.g. Eon, 2011 and

references therein). However, the calculation of atomic

coordinates from these descriptors seems to be a tedious task,

or the descriptor is defined the opposite way around, i.e. it is

itself the result of a calculation based on the set of atomic

positions. We also exclude any QCSD from the discussion that

is based on classical concepts of crystallography and structural

chemistry (see Burzlaff & Rothammel, 1992; Burzlaff &

Malinovsky, 1997 for a survey), such as coordination numbers,

the associated polyhedra or their duals, the Voronoı̈ poly-

hedra, not because they are not useful in general (Mackay,

1984), but because they are not useful in general, for several

reasons (Hoppe, 1998, 2004).

Essentially, we confine our argument to three widely used

crystallo-chemical notations, which, in one aspect or another,

convey our idea of what a structural descriptor should look

like, except for their qualitative or semi-quantitative nature:

(i) Niggli’s notation (e.g. 2
1½CC3=3� for the graphite struc-

ture) allows for a description of mutual atomic coordination

motifs and gives further information about the predominant

periodicity of partial structures. In the case of rather simple

structures this information may be sufficient to reconstruct the

shape of the coordination polyhedra and possibly the entire

crystal structure.

(ii) Jagodzinski’s notation (e.g. hhc for the structure of

elemental Sm) is equally suitable when it comes to polytype

structures and their stacking sequence. It is unique, owing to

its construction from local information, i.e. the relative

orientation of adjacent hexagonal closest-packed layers, and

thus allows an unambiguous reconstruction of an albeit

restricted class of structures.

(iii) Pearson’s notation (e.g. cF8 for the diamond structure)

captures some essential crystallographic information, i.e. the

crystal system, the Bravais type and the number of atoms in a

unit cell, and proves to be especially useful in the classification

of inorganic and intermetallic crystal structure types, although

it is neither a unique descriptor nor does it contain any

information about the mutual arrangement of atoms, despite

its otherwise quantitative character.

An ideal QCSD should combine most of the aforemen-

tioned advantageous features such that it allows an unam-

biguous reconstruction of the structure, thus preserving the

information about the mutual spatial arrangement of atoms.

2.2. MCGs as QCSDs

A crystal structure is usually described geometrically by

giving its space-group symmetry, its unit-cell metric and the

fractional coordinates of all atoms in an asymmetric unit.

While this description is essentially complete, it is, however,

cumbersome to evaluate or even to memorize, especially in

the case of complex structures containing several hundreds of

atoms in their unit cell. As it happens, the mandatory struc-

tural information is mostly missing in the original literature

nowadays and electronic crystal structure databases, regard-

less of their advantage in general, are full of errors and

omissions.

Would it not be nice if there was some way to store and

memorize the crystallographic data, specifically the atomic

coordinates, in a more comprehensive way? For example, by

identifying some previously hidden relationships between

them, even if these interconnections are not in strict confor-

mity to space-group symmetry [symmetry is certainly one of

the most powerful concepts in crystallography and science in

general, but its alleged importance may likewise distract

attention from local structural motifs and their pseudo-

symmetry, as well as other subtle interrelationsships (e.g.
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metrical ones; see Janner, 2004 for an example), which may be

much more important from a chemist’s point of view]. Or,

alternatively, to simultaneously approximate a given set of

coordinate values to a certain precision (which may be quite

low, i.e. of a magnitude similar to the experimentally deter-

mined standard deviations) by means of some mathematical

function – comparatively less complex regarding the number

of parameters to specify.

We argue that MCGs are such functions, encoding a wealth

of geometric information with a very small number of para-

meters and, most notably, they are independent of the overall

system size. This seems all the more true, since it was shown

that iterative mappings are equivalent descriptions of MCGs

and that iterative functions, quite similar to MCGs, exist which

are capable of coding even such complex structures as quasi-

crystal approximants by means of some recursive algorithm

(cf. xA4).

2.3. Sublattice descriptions of layer structures

From the vast amount of literature on layer structures we

outline a small selection of works, thereby exploring classes of

crystal structures which may be alternatively described by

means of the multiplicative congruential method. As a

common feature, these works rely heavily on lattice–sublattice

relationships, often including similar sublattices, in order to

characterize the spatial arrangement of atoms and possibly

vacancies of their constituent layers.

Subdivisions of the hexagonal net were devised by Loeb

(1964) as examples in his modular approach regarding the

systematic generation of crystal structures. The attribute

modular has two meanings in this context: first, it describes the

mere possibility of building complex structures out of simple

units (modules), and second, it expresses the notion of what

Loeb called a modular algebra, i.e. the existence of congruence

relations between coordinates and their representation in the

notation of modular arithmetics. In succession these relations

were used by Loeb (1990; x6) to represent the invariant cubic

lattice complexes F, D and I by means of distribution matrices,

thereby anticipating the application of MCGs in crystal-

lography (cf. Hornfeck & Harbrecht, 2009 for further refer-

ences to the work of Loeb).

Similar sublattices of hexagonal and square symmetry

appear again in the work of Takeda & Donnay (1965), now

under the idiosyncratic term of compound tessellations intro-

duced by Coxeter (1948). However, only a small number of

actual representatives exhibiting a compound tessellation

were described by them (e.g. the mineral klockmannite).

Pearson, on the other hand, devotes a whole chapter of his

book (Pearson, 1972, x7) to structures based on the close

packing of triangular close-packed nets and subdivisions

thereof, thereby covering a variety of different structure types

and stoichiometries. Pearson’s approach in presenting a large

compilation of crystal structures as derived from the complex

stacking of like or distinct layers exhibits a high probability for

the identification of possible candidates, for which the multi-

plicative congruential method should be applicable in one way

or another.

Lattice subdivisions were furthermore emphasized by Iida

(1957) studying the crystal structure of magnetic oxides, by

Figueiredo (1973) systematically deriving the spatially homo-

geneous distribution of constituents within binary closest-

packed layers of given composition, by Lima-de-Faria (1983)

in a quest for a standard representation of inorganic layered

structure types, as well as by González et al. (2011) in their

study of pseudo-uniform orderings in two dimensions.

While recognizing the importance of the underlying prin-

ciple for the systematic description of crystal structures, Iida

(1957) restricted himself, rather unnecessarily, to hexagonal

similar sublattices of small indices T = 3, 4 and 7. And while

neither Figueiredo (1973) nor Lima-de-Faria (1983) explicitly

mention congruence relations in their respective approaches,

Lima-de-Faria (1978) stresses that, for layer structures, the

problem is better described as ð2þ 1Þ rather than three

dimensional. Apart from the stacking of layers, which may

be regarded as a problem of its own, the constitution of

the individual layers can be reduced to an entirely two-

dimensional problem. Indeed, many crystal structures,

especially among intermetallic phases, are built from alter-

nating flat and puckered layers, with the puckering often

negligible, in which case the multiplicative congruential

method is applicable without restrictions. Finally, González et

al. (2011) show how pseudo-uniform grid-like orderings of a

minority component in compositionally flexible compounds

are triggered by the mutual self-avoidance due to repulsive

interactions. In particular, these orderings can be described as

(in)commensurately modulated structures with composition-

dependent wavevectors and step-like modulation functions for

the site occupancy. Modulation functions, too, satisfy one of

the aforementioned criteria for a structural descriptor, being a

mathematical tool encoding structural information in a most

concise manner.

2.4. A quest for candidate structures

A preliminary search for candidate structures was most

successful yet for some kinds of layered structures, repre-

senting the (2 + 1)-dimensional case.

Work employing Pearson’s database (Villars & Cenzual,

2007) suggests the compounds Pt12Si5 (dimorphous: room

temperature = tI34, high temperature = tP68) and Ce5Mg41

(tI92) as tetragonal examples and Pu3Pd4 (hR42), Pr7O12

(hR57), PdAl (hR78), CuSe (hP156), Cu12:7Cr19Al83:8 (hP244),

Sc6Zr25O59 (hR540) as hexagonal ones. The decision as to

whether a structure could be counted as a candidate was based

on a visual inspection of parallel projections of the crystal

structures along the axial direction of their respective hexa-

gonal or tetragonal unit cells. In most cases the grid-like

nature of their sublattice structure dominates this projection,

even if in general several layers with slightly different atom

distributions are stacked on top of each other perpendicular to

the projection axis, thus blurring the impression. A greater

number of representatives may be retrieved from the vast

research papers

170 Wolfgang Hornfeck � Quantitative crystal structure descriptors Acta Cryst. (2012). A68, 167–180



amount of crystal structure data by – yet to be devised –

refined search procedures.

Previously, another three hexagonal examples falling into

this category were described, represented by the structures of

Co2Zn15, IrZn3 and Au7In3, which crystallize in three structure

types of their own, although sharing the same Pearson symbol

hP60 (Hornfeck & Harbrecht, 2009; Hornfeck, 2010). Yet

another hexagonal example, and the most complex found up

to now, as indicated by its Pearson symbol hP567, is given by

the amalgam Na11Hg52 [P6 (No. 174), a = 3970.3 (2), c =

968.10 (5) pm, Z ¼ 9], whose complex superstructure was

recently elucidated by means of single-crystal X-ray diffrac-

tion (Hoch, 2010).

Finally, a comment should be made about the frequency of

candidate structures constituted by layers of hexagonal and

square symmetry. From a first glimpse it seems that hexagonal

structures prevail, although the set of as yet identified candi-

date structures is still small. Nevertheless, a justification may

be given based on the fact that the closest packing of equal

spheres in two dimensions is the hexagonal one. For this

reason one should expect to find a bias in favour of hexagonal

structures.

3. Applications

Fundamentally, any MCG describes a mapping between a pair

of coordinates ðx; yÞ. Hence, MCGs are essentially two-

dimensional in nature and best suited for the description of a

flat (or, as is often the case, negligibly puckered) layer of

atoms. However, generalizations to three dimensions are

possible, where one may discern two cases:

(i) The (2 + 1)-dimensional case. A suitable combination of

two MCGs may be used to encode three-dimensional struc-

tures, according to the formula for a general coordinate triple:

�
Zi

M
;

mZi ðmod MÞ

M|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
rotational

;
nZi ðmod NÞ

N|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
translational

�
� N�n � NþN�n: ð8Þ

In fact, although at first composed of mere translations, this

notation represents the rotational and translational part of the

crystallographic N-fold screw axes (N ¼ 2; 3; 4; 6). The crys-

tallographic restriction has to be applied, since MCGs are

defined on lattices. Note that the coordinates only depend on a

single integer variable Zi.

The geometrical interpretation is that of a combined coor-

dinate shift defined on the unit cell of a three-dimensional

lattice (cf. Fig. 1). Any point set (or, by analogy, atomic

structure) whose elements can be reached successively via a

constant shift vector with three, non-vanishing spatial

components may be described by such a combination of two

MCGs. Such an approach is nearly always possible, since most

three-dimensional crystal structures may be formally dissected

into an array of two-dimensional atomic layers.

(ii) The genuine three-dimensional case. The sublattice

structure of an MCG is essentially a feature present in arbi-

trary dimensions. Thus, a three-dimensional coordinate vector

is simply given by merging three successive iterations of an

MCG’s output into the 3-tuple

ðZn;Znþ1;Znþ2Þ � ðZn;mZn;m2ZnÞ ðmod MÞ: ð9Þ

In this way a single MCG, as a special case of a combination of

two distinct MCGs (see above, employing the substitutions

N! M and n! m2, where m2 stands for the multiplier

modulo M after the second iteration step), creates a lattice

structure in three dimensions.

Both methods effectively give rise to a linearization of the

three-dimensional structure under consideration (cf. xx3.2.1

and 3.3).

When it comes to the utilization of MCGs in relation to

actual crystal structures, two approaches are discernible,

depending on the objective in mind. Either

(i) to idealize the crystal structure to such an extent that it

becomes possible to use an MCG with the smallest suitable

modulus for its description, or

(ii) to make use of MCGs with ever-increasing moduli until

a rational approximation of the real crystal structure to a

desired precision is eventually reached.

Some cautionary notes shall be given regarding the usage of

the terms ideal and real. Both refer to abstract structural

models and their coordinate description in the first place, but

make a distinction about their origin. Whenever we refer to

structural models of actual crystal structures with a set of

atomic coordinates originating from some structural refine-

ment we will speak of real coordinates. As such they may be

approximated to arbitrary precision by ideal coordinates

generated by the action of an MCG. Thus, ideal does not refer

to a perfect, infinitely extending ideal crystal, and real does not

connote the real structure of a crystal, as may be visualized e.g.

by electron microscopy.

Colloquially speaking, one either adjusts the structure

description to the actual crystal structure [rational approx-

imation; case (ii)] or proceeds the other way round [idealiza-

tion; case (i)].

Both approaches are useful in their own way: the idealiza-

tion of the crystal structure allows for the revelation of

otherwise hidden structural relationships to more funda-

mental structures, whereas the rational approximation to a

precision matching the experimental error margins makes it

possible to store the numerical information given by the

fractional atomic coordinates as determined in a diffraction

experiment in a concise way.

It is important to note that the algorithmic complexity of

the structural description by means of MCGs, i.e. the shortest

way of encoding, is independent of either approach, since the

number of crystallographic orbits to encode remains constant

irrespective of the size of the chosen modulus.

3.1. Rational approximation of a layer structure

Because of a theorem of Dirichlet (Hardy & Wright, 2008;

theorem 201, p. 218) it is always possible to simultaneously

approximate a given set of real numbers to arbitrary precision

by rationals sharing a common denominator. In our approach
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the real numbers represent the actual atomic coordinates and

the common denominator corresponds to the sublattice index

(modulus) for the best-approximating sublattice (MCG). Fig. 2

depicts how selected crystallographic orbits of higher-index

sublattices may be used to encode the deviations from the

ideal sites of a lower-index sublattice. The method will work as

long as the actual crystal structure to be approximated can be

conceived to be a superstructure of some basic structure,

thereby establishing the necessary lattice–sublattice relation-

ship.

A recourse to the properties of iterative maps (xA4) seems

instructive too. For iterative maps an abounding number of

rational starting values exist which result in periodic orbits

(possibly of long period) having the same cycle length ‘ as for

an MCG with integer-valued seed. These orbits may then be

used for a description which diminishes the deviations up to a

specified precision.

It is possible to optimize each crystallographic orbit sepa-

rately, employing a number of distinct MCGs each with

minimal modulus. Although such an optimization procedure

possibly lengthens the description, in terms of the least

necessary number of structural parameters, it eventually

accounts for all deviations to an ideal superstructure.

The precision of a rational approximation may be calculated

via a least-squares method applied to the distances between

the approximate and actual atomic positions of the structure.

For an MCG of given modulus and thus a sublattice of given

index the maximal error corresponds to an atom lying at the

barycentre of a fundamental mesh. Enlarging the modulus will

minimize the deviations until eventually a perfect coincidence

is reached for a given precision.

Experience shows that the atoms of actual crystal structures

are usually located at sites nearby the nodes of the basic

lattice, which represent the ideal coordinates of the super-

structure, and that the observed deviations are therefore much

smaller than the upper bound for the error might suggest.

3.2. Ideal representation of a three-dimensional structure

As was sketched before, it is, in principle, simple to gener-

alize the concept of an MCG to more than two spatial

dimensions. However, it is far from trivial to identify actual

crystal structures, exemplifying the genuine three-dimensional

rather than the (2 + 1)-dimensional case. In contrast, it is

simple to construct some artificial structure satisfying the

constraints of the genuine three-dimensional case.

3.2.1. Construction of an artificial permutation structure.

A simple example of an artificial structure may be obtained by

the combination of two MCGs. For reasons of simplicity and

without loss of generality we make the additional restrictions

of having the two MCGs share the same modulus and cycle-

length sequence. Thus, we choose the set

X � X; Y � 3X; Z � 5X ðmod 7Þ ð10Þ

of congruence relations. Dividing these sets of integral coor-

dinates by their common modulus yields the fractional coor-

dinates ðx; y; zÞ ¼ ðX;Y;ZÞ=7.

For the special case under consideration the two single

MCGs describe a pair of enantiomorphous sublattices of index

7, similar sublattices, in fact, if embedded in a hexagonal

reference frame (cf. Fig. 1). Except for the first, generating

element of a cycle, only the positions of the other elements
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Figure 2
First row: pair of hexagonal sublattices of index 7 with their single, ideal
orbit highlighted. Second row: pair of enantiomorphous hexagonal
sublattices of index 19 and their orbits that account for distinct deviations
from the ideal orbit of the index-7 sublattice. Third row: single orbits of
higher-index sublattices (higher-moduli MCGs) with M ¼ 31, 43 and 57
that could be used to represent a spatially distorted ideal orbit of a
hexagonal sublattice of index 7, associated with the MCG with
hm;Mi ¼ h3;7i. The symbol

S
denotes the union of two MCGs with

respect to a common reference frame (here hexagonal unit cell).



within a cycle are reversed. Thus, one MCG defines the inverse

permutation of the other, with the length of all cycles

remaining unaffected.

The structure thus obtained is depicted at the top of Fig. 3,

both as an abstract projection scheme, with the ðx; yÞ coordi-

nates and the heights in the upwardly oriented z direction

given as integers, and as a tilted view of a three-dimensional

bar plot, with shaded cubes representing the atomic sites. This

construction, in its most isotropic metrical embedding, yields a

cubic unit cell which has similar projections along all of its

principal axes. An analysis of mutual coordination shows that

atoms in such a structure would be distributed quite uniformly.

Because of its spatial homogeneity, one is tempted to spec-

ulate if such a structure could be realized. A search for

symmetry employing the ADDSYM subroutine of the

PLATON suite (Spek, 2009) shows the presence of a threefold

inversion axis, with the cubic unit cell in fact representing the

primitive unit cell for a trigonal, R-centred structure better

described with hexagonal axes in space group R3 (No. 148).

Corresponding to the number of cycles in the MCG’s cycle

representation two distinct sites are occupied, i.e. 3a ð0; 0; 0Þ

and 18f ðx; y; zÞ ¼ ð1=7; 3=7; 0Þ, with a total of 3� 7 ¼ 21

atoms within the R cell.

This artificial structure is remarkable for another two

features:

(i) As a consequence of its construction the structure can be

regarded as a three-dimensional generalization of a two-

dimensional permutation matrix, since all possible sites are

vacant, except for a single occupied site in every row ½u; 0; 0�,

column ½0; v; 0� and rod ½0; 0;w�. Accordingly, we propose to

name such crystal structures permutation structures.

(ii) In addition, the structure exemplifies a linearization

procedure, in that all atoms are passed along a linear path, e.g.

along the cubic ½3; 2; 1� direction, as indicated by arrows in the

top left scheme of Fig. 3.

The latter feature will be discussed in detail in x3.3.

3.2.2. Near-miss permutation structure of b-Mn. Following

the aforementioned rationale the question arises of whether

permutation structures exist among the actual known crystal

structures.

Although no perfect match has been found until now, and it

is not yet even clear how to effectively search for it, a near-

miss candidate does exist: namely, the peculiar structure of

�-Mn. This allotrope of Mn crystallizes in one of the chiral

cubic space-group types P4132 (No. 213) and P4332 (No. 212)

with the primitive unit cell comprising 20 atoms (Pearson

symbol cP20), two of which form an asymmetric unit (Wyckoff

positions Mn1: 8c; x; x; x and Mn2: 12d; 1=8; y; yþ 1=4). The

structure was previously described as a body-centred cubic,

garnet-type rod packing of chains of Mn1Mn23 tetrahedra

combined with Mn26 triangular metaprisms (the shape of a

metaprism is in between that of a triangular prism and

antiprism, with an intermediate angular offset regarding

the opposite basal planes). Under the assumption of a

most uniform distribution of interatomic distances ideal

parameters were derived to: x ¼ 1=ð9þ 331=2Þ ’ 0:0678 and

y ¼ ð9� 331=2Þ=16 ’ 0:2035 (O’Keeffe & Andersson, 1977).

An alternative description from Nyman et al. (1991) describes

the �-Mn structure as a primitive rectilinear rod packing of a

polyhedral helix solely composed of nearly regular, face-

sharing tetrahedra. Both rod packings differ in the crystal-

lographic directions to which the rods are aligned (O’Keeffe,

1992).

Within our approach an idealized structure of �-Mn is

depicted as a permutation structure, in a similar fashion as
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Figure 3
Top: abstract point structure generated by the combined action of two
MCGs, Y � 3X ðmod 7Þ and Z � 5X ðmod 7Þ, i.e. with the distinct
multipliers m ¼ 3 and n ¼ 5 and a common modulus M ¼ 7. The
structure is shown once in projection (left side) with the heights in the z
direction given by the numerator of the rational coordinate values (with a
common denominator of 7) and another time as a three-dimensional bar
plot, with shaded cubes representing the points (right side). Note that the
cubes are distributed in such a way that the structure may be regarded as
a generalization of a permutation matrix to three dimensions. Bottom:
idealization of the �-Mn-type structure choosing a similar two-
dimensional representation as before (Wyckoff sites 8c and 12d shaded
dark and light grey, respectively), disregarding the proper symmetry
relations between equivalent sites while emphasizing its near-miss
character as a three-dimensional permutation structure. Note also the
near-miss character regarding the distribution of sites (in projection)
relative to the sketched sublattice meshes (dashed lines), whose edge
lengths are nearly incommensurate by a factor of 21=2.



already shown in Fig. 3, i.e. as a bar plot encoded in an abstract

two-dimensional projection scheme. Atoms corresponding to

the Wyckoff sites 8c and 12d are shaded dark and light grey,

respectively. However, the proper cubic symmetry relations

have to be discarded completely, such that all sites in fact

represent the general position of space group P1 (No. 1).

The ideal permutation structure of a near-miss �-Mn-type

structure is given by the cycle representation

ð0Þ ð1 18 15Þ ð2Þ ð3 5 10Þ ð4 17 7Þ

ð6 11 13Þ ð8 16 20Þ ð9 19 12Þ ð14Þ
: ð11Þ

Since, apart from fixpoints located at ðx; x; xÞ, only cycles of

length three occur, the cycle representation seems to be

related to a threefold rotation perpendicular to a cubic body

diagonal. However, no obvious construction by means of two

MCGs, as exemplified for the artificial model of x3.2.1, has

been figured out yet. Accordingly, the existence of a linear-

ization procedure is uncertain, though still a matter of

assumption.

The ideal positions of the permutation structure deviate to a

variable extent from the refined ones for the actual crystal

structure of �-Mn. The permutation structure can be seen as

an equi-distributed, ‘average’ structure.

The near-miss character is evident in diverse details of the

projected structure, e.g. regarding the distribution of atoms to

two independent square sublattices, sketched by dashed lines

in Fig. 3. Both sublattices almost relate to each other by the

classical construction of nested squares, where a smaller

square is inscribed into a larger one such that their respective

edge lengths scale in the ideal, incommensurate ratio of 1: 21=2

(the ratio 8: 12 of the site multiplicities may be seen as an

approximation of this irrational ratio). Denoted by their

heights the smaller square is composed of the points at

z ¼ 4; 9; 14; 19, with the larger one at z ¼ 1; 6; 11; 16. The

distance in z corresponds approximately to the translational

part of a 41 screw axis. However, there is a mismatch

concerning the orientation of adjacent nested squares, which

are related by symmetry in the actual structure of �-Mn. For

instance, the atom at z ¼ 20 could be either part of a sublattice

of small squares defined by the atoms at z ¼ 9 and z ¼ 14 or

equally well part of a sublattice of large squares defined by

itself and the atom at z ¼ 15.

Incommensurate length scales are a characteristic

phenomenon exhibited by quasicrystals and quasicrystal

approximants. Indeed, �-Mn is the approximant structure of

an octagonal quasicrystal with two-dimensional quasi-

periodicity and a structure corresponding to an Ammann–

Beenker-type tessellation (Elenius et al., 2009).

The major discrepancy of the model lies in the fact that the

Wyckoff position 12d is a special position with a restraint in

one coordinate value to multiples of 1/8, which are symmetry-

wise inconsistent with multiples of 1/21, except for a structure

grossly reduced in symmetry (i.e. P1). A possible remedy

would be to use sublattices of much higher index instead, e.g.

by means of employing common multiples of the Wyckoff

multiplicities. However, under these circumstances a com-

paratively large amount of vacancies has to be introduced,

yielding a diluted or sparse permutation structure.

Finally, it has not escaped our notice that a ‘bar plot’-type

model of the �-Mn structure had been devised by Chapman as

early as about 1952 at the Crystallography Department of the

Cavendish Laboratory at the University of Cambridge (see

Hyslop, 2008 for a picture), albeit without giving an explicit

reference to the structure’s permutation-like character.

3.3. Algorithmic generation of crystal structures

Besides their possible application for the concise and size-

independent numerical encoding of crystal structure infor-

mation, MCGs may also be used for a systematic, i.e. an

algorithmic, generation of crystal structures. The idea behind

this may be sketched as follows.

Given a fixed modulus M any multiplier m 2 Z=MZ

imposes a corresponding cycle representation. A single cycle,

closed under subsequent transformations of the MCG,

represents a single crystallographic site, closed under a certain

symmetry. A site may be either occupied by some type of atom

(�) or empty, i.e. occupied by a formal vacancy (�). Once an

MCG description is found for a certain crystal structure,

employing two distinct multipliers (coordinate shifts) m and n

and, possibly but not necessarily, two distinct moduli (sublat-

tice periodicities) M and N for a three-dimensional structure,

the structure may be linearized accordingly. Afterwards, the

linear sequence of sites and its occupancy pattern (e.g.

� � � � �) define a binary string (or ternary etc. depending on

the number of atom types including vacancies), an occupancy

sequence, such as ð10111Þ2, which may be further compactified

by giving its decimal value ð23Þ10.

It should be noted that the structures thus obtained already

share some characteristic of actual crystal structures, as a

consequence of their construction from the sublattice struc-

ture of MCGs, in that the sites and hence the atoms are

spatially distributed in a uniform manner. Therefore this

approach of algorithmic structure generation differs from

other ones that yield a more random distribution of atomic

sites instead.

The two most notable aspects of this approach are as

follows:

(i) Crystal structure linearization. At first glance a linear-

ization of a three-dimensional crystal structure seems disad-

vantageous, since naturally most of the crystal chemical

information concerning the exact nature of the spatial

arrangement of atoms will get obscured, to say the least.

However, within the framework of the multiplicative

congruential method no information is really lost, since the

construction is bijective. Thus, any three-dimensional infor-

mation may be fully reconstructed at any time. On the

contrary, a linearization procedure has some major advan-

tages, especially in terms of electronic data storage, retrieval

and evaluation. For this very reason several linearization

procedures, such as Wiswesser line notation or SMILES have

been invented for molecular compounds (Wiswesser, 1985;

Weininger, 1988).
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(ii) Combinatorial crystallography. The multiplicative

congruential method not only offers a way for the generation

of candidate structures for actual crystal structures, but also

offers a systematic way of doing so, instead. For instance,

regarding the generation of a series of crystal structures, the

multiplier of an MCG may be varied systematically while its

modulus remains fixed, whereas the additional variation of the

modulus (sublattice index) imposes a natural hierarchy among

the generated structures, analogous to the well known group–

subgroup relationships between space-group types. A

systematic generation of crystal structures thus, at the same

time, gives an exhaustive enumeration of possible (super)-

structures as well as a hierarchical classification scheme for

them. Again, similar approaches are well established in

molecular chemistry, starting from Cayley’s pioneering work

on the enumeration of the constitutional isomers of the

alkanes to modern computational approaches like the

MOLGEN project (Kerber et al., 2004; Gugisch et al., 2007).

In such a way MCGs, together with a combinatorial array of

occupancy sequences, may be used in the field of chemical

crystallography to specify the spatial arrangement of atoms in

arbitrary three-dimensional structures.

4. Outlook

4.1. Back and forth to number theory and crystallography

Permutations of the type Zi 7!mZi ðmod MÞ with

Zi 2 Z=MZ and gcdðm;MÞ ¼ 1 play a significant role in

number theory, e.g. as a relevant part in an elementary proof

of the Fermat–Euler theorem (Hardy & Wright, 2008, p. 78).

The corresponding permutation matrices Pðm;MÞ, of which

equation (5) gives an example, are generalizations of circulant

matrices. An m circulant is an M �M matrix such that each

row (except the first) is obtained from the preceding by

shifting each element m positions to the right (Brenner, 1973).

In yet another manner an MCG may impart a relation

between certain sets of integers, termed Singer difference sets,

which are n-element subsets of Z=MZ, where the modulus is

given as M ¼ ðq3 � 1Þ=ðq� 1Þ, q ¼ n� 1 is a prime power

and each set’s distance set is composed of the

M � 1 ¼ nðn� 1Þ non-zero elements of Z=MZ appearing

exactly once (Lemke et al., 2002). Sharing the same distance

set is a necessary but not sufficient condition for two or more

point sets to be homometric, since two or more of such point

sets may alternatively either be congruent or enantiomor-

phous to one another. A special class of homometric sets in

one spatial dimension was intensively studied by Patterson

(1944), for which he coined the name cyclotomic sets in regard

to the solutions of the cyclotomic equation zn ¼ 1 ðz 2 CÞ.

An example of such a relation is given by the MCG

Znþ1 � 2Zn ðmod 13Þ; ð12Þ

with

ð0Þ ð1 2 4 8 3 6 12 11 9 5 10 7Þ ð13Þ

as its associated cycle representation, iteratively applied to the

set f0; 1; 3; 9g. One can easily assure oneself, using the

graphical method depicted in Fig. 4, that two out of four

distinguishable sets are distinct entities representing the same

distance set and thus are homometric to each other, while the

other two sets are mere reflections of the former. The cyclo-

tomic point sets devised by Patterson highlighted the

complementary nature of a certain class of homometric

structures. A construction due to Zobetz (1993) generalized

this to two dimensions, founded on what he called kommen-

surable Mehrfachgitter (commensurate multilattices), and

what in fact are general sublattices with an even number of

basic lattice nodes confined within a sublattice unit mesh (and

thus an odd sublattice index), such that an equipartition into

two complementary point sets is possible, which may then

form a homometric pair.

4.2. MCGs in dual space

Any lattice–sublattice relationship in direct (real) space

corresponds to a lattice–superlattice relationship in dual

(reciprocal) space. Accordingly, the Wyckoff positions of

direct space have a counterpart in dual space, termed Wintgen

positions (Wintgen, 1941). Thus, it seems possible, at first

glance, to directly transfer all the aforementioned ideas

regarding the use of MCGs in direct space to dual space. As

an MCG in real space defines a mapping of a Wyckoff

position’s coordinates onto another, one should expect a

similar mapping in reciprocal space, namely for the k-vector

coefficients of a Wintgen position [International Tables for

Crystallography, Vol. B (2nd ed.), ch. 1.5], with possible

ramifications regarding the simplification of the phase-

angle term in the complex expression of the structure-factor

equation.

5. Conclusion

MCGs were previously introduced for the coordinate

description of ideal, two-dimensional superstructures, for

which the atomic sites had to be in exact registry with the

underlying basic lattice nodes.
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Figure 4
Homometric cyclotomic sets related by the action of an MCG. Shown in
the left diagram is the clockwise ascending enumeration and labelling of
the line lattice nodes, to which the notation of the difference sets refers,
whereas on the right diagram the set of interpoint distances, given as
multiples of a unit chord length, is emphasized.



A twofold extension was developed within this paper in

order to treat the more realistic cases of non-ideal, three-

dimensional superstructures, thereby facilitating the use of

MCGs as quantitative crystal structure descriptors. In parti-

cular, two strategies were introduced of either adjusting an

actual crystal structure or its description by a structural model

to one another until their relative mismatch is minimized with

respect to a given precision. Furthermore, a method was

sketched for the algorithmic generation of crystal structures

by means of MCGs employing an inherent linearization

procedure for their combinatorial enumeration.

MCGs have their concomitant virtues, since matrix algebra

does not have to be invoked in order to calculate sets of

transformed coordinates resulting from a lattice–sublattice

transformation, nor does their associated algorithmic

complexity rise with its index. Instead, it merely takes a pair of

integers, the multiplier and the modulus of an MCG, in order

to encode all the necessary numerical information about an

actual crystal structure’s coordinates. Moreover, it involves

nothing more than applying subsequent multiplications alter-

nating with division with a remainder to generate all crystal-

lographic orbits explicity, preserving their point-group

symmetry – algebra which can be done by pen and paper.

Thus, it is our conviction that MCGs offer a viable way of

encoding the structural complexity of a given crystal structure

into a single, yet quantitative, crystal structure descriptor.

APPENDIX A
Generalizations and extensions

A1. Primitive sublattices of arbitrary symmetry

Although the first treatment of MCGs within the crystal-

lographic realm was largely restricted to similar sublattices

of hexagonal and square symmetry, the concept seems prac-

tical for any lattice–sublattice relation in general, independent

of a given symmetry or spatial dimension, as long as the

sublattice under consideration is a primitive – but not neces-

sarily similar – one, including any of the non-centred, two-

dimensional Bravais lattices (Fig. 5, top), as well as their

higher-dimensional analogues.

The reason for this is given by the bijective character of the

mapping, assigning each sublattice point its unique pair of

integral coordinates. On the contrary, any non-primitive

sublattice contains several lattice points that violate this

condition, due to the existence of additional centring trans-

lations. This argument generalizes in a straightforward manner

to non-primitive sublattices in any dimension.

It is therefore possible to cover a much greater parameter

space (Fig. 5, bottom) than before. It seems especially inter-

esting to study the restrictions imposed on an MCG’s para-

meter set by the symmetry of the basic lattice, as well as the

invariance of the multiplier m, or an eventual breaking

thereof, under affine transformations of the underlying lattice.

A2. Geometric algebra description of MCGs

The transformation of the basic vectors of a given lattice �
into the ones of its sublattice �0 is described by means of

matrix algebra as

ðA;BÞ�0 ¼ ða; bÞ�M; M ¼

�
p q

r s

�
: ð14Þ

The integer modulus M of an associated MCG is directly

determined as the index of the lattice–sublattice transforma-

tion, i.e. as the value of the determinant of the above trans-

formation matrix, M ¼ det M.

The integer multiplier m, however, is less directly obtain-

able, despite being restricted to the interval ½1;M � 1�. It has

to be determined from the unknown lattice vector r ¼ ðu; vÞ
t

(with the superscript ‘t’ denoting a transposition), extending

from the origin to the lattice point closest to the line segment

defined by the transformed lattice vector B, via the defining

equations

u ¼ ðpþ �qÞM�1 v ¼ ðrþ �sÞM�1
ð15Þ
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Figure 5
Top: dissimilar primitive sublattices of basic lattices with rectangular and
oblique symmetry, respectively, shown together with their corresponding
MCGs and cycle representations. Bottom: parameter space of two-
dimensional lattices given by the axial ratio a=b and the angle �. The
parameter space of lattices with hexagonal (h) and square (t) symmetry is
zero-dimensional (a point), the one of rectangular (o) and centred
rectangular (r) lattices is one-dimensional (a line) and the one of oblique
(m) lattices is two-dimensional (the plane). Any point of the parameter
space may be reached by means of affine transformations of a given
lattice.



[cf. equation (16) in Hornfeck & Harbrecht, 2009]. Now, one

may solve for the multiplier � by substituting one equation

into the other, thereby eliminating the modulus M common to

both:

� ¼
pv� ru

us� vq
¼

det
p u

r v

� �

det
u q

v s

� �, jA ^ rj

jr ^ Bj
¼
�

1
: ð16Þ

At first sight there seems nothing new, since the variables u

and v are still unknown.

However, one may identify both numerator and denomi-

nator with the determinant of a 2� 2 matrix. Furthermore

these matrices are each composed of a pair of vectors, namely

one of the transformed basic vectors, A or B, of the sublattice

�0 together with the unknown vector r. Thus, both determi-

nants represent the areas of the lattice meshes spanned by

these vectors.

This insight may be represented within the language of

geometric algebra. Being a generalization of matrix algebra

the well known scalar product x � y ¼ jxjjyj cos �xy, defined

between two vectors x and y, is accompanied by a comple-

mentary wedge product x ^ y ¼ jxjjyj sin �xy, yielding a

bivector, i.e. a geometric object representing an oriented area,

whose magnitude jx ^ yj is a scalar measure of its spatial

extension (Dorst et al., 2007).

Since the vector r by definition represents the lattice point

closest to the line segment given by the basic vector B, the

mesh spanned by both vectors describes a fundamental mesh

of the lattice �, hence is of unit area, jr ^ Bj ¼ 1 (otherwise

there would be at least another lattice point lying in this mesh,

which would be closer to the aforementioned line segment,

which is a contradiction to the definition of r). As a logical

consequence, the expression jA ^ rj describes a lattice mesh

of area �, giving the multiplier a similar geometric meaning as

the modulus (Fig. 6), for which jA ^ Bj ¼ M. In this way the

linear nature of the length ratio m=M, originating from the

definition given in equation (2) and representing two distinct

translations, transcends into two dimensions and a ratio m=M

of areas. Since geometrical algebra easily generalizes to spaces

of any dimension similar results are expected for three-

dimensional space. For example, the concatenation of the

wedge product, jA ^ B ^ Cj, with A;B;C some basic vectors

of a three-dimensional sublattice, allows the simple calculation

of its index.

A3. General cycle representation of MCGs

The MCG-induced cycle structure preserves the rotation

symmetry of the underlying two-dimensional lattice, regarding

any combination of the multiplier m for a fixed modulus M

(Hornfeck & Harbrecht, 2009; the special multipliers � and �,

however, correspond to the rotational symmetry operations of

highest order and thus the cycles of maximal length). The

rotation can then be expressed in matrix form as�
Znþ1

Znþ2

�
¼ R

�
Zn

Znþ1

�
ð17Þ

with R a 2� 2 rotation matrix. For an N-fold rotation the

general formula �
Znþm

Znþmþ1

�
¼ Rm

�
Zn

Znþ1

�
ð18Þ

holds true, with RN ¼ I, where I is the identity matrix. At

this point it seems useful to remember that successive

elements of a cycle are regarded as a coordinate pair, e.g.

ðX;YÞ ¼ ðZn;Znþ1Þ. Thus, the matrix multiplication with R

acts in an equivalent way as the MCG. From this it is possible

to calculate all elements of a cycle from the knowledge of the

special multiplier � alone.

For a similar sublattice with hexagonal or square symmetry

the rotation matrix for a clockwise, i.e. negative sense, rotation

is given by

Rð6�Þ ¼

�
0 1

�1 1

�
or Rð4�Þ ¼

�
0 1

�1 0

�
; ð19Þ

respectively. Applying the matrices in the aforementioned

manner gives (for the hexagonal case)�
Znþ1

Znþ2

�
¼

�
0 1

�1 1

��
Zn

Znþ1

�
: ð20Þ

Writing out the second line yields the difference equation

Znþ2 ¼ �Zn þ Znþ1 ð21Þ

where an integer value is given by the sum of the two

preceding values in the sequence (or, equivalently, by the first

two values of the sequence, if higher matrix powers are

considered). Regarding recurrence relations, a difference

equation is the discrete analogue to a differential equation in
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Figure 6
Wedge products of lattice vectors – shown for a hexagonal similar
sublattice corresponding to the MCG with m ¼ 3 and M ¼ 7 – and their
geometric interpretation as lattice meshes of defined area (shaded light
and dark grey), thus yielding the special multipliers � and � as results.



the context of functions. Using the definition of equation (2)

(for a special multiplier m ¼ �) one gets

Znþ2 ¼ �Zn þ �Zn ¼ ð�� 1ÞZn ðmod TÞ: ð22Þ

From the recursion follows

Znþ2 � �Znþ1 � �ð�ZnÞ � �
2Zn ðmod TÞ ð23Þ

and thus, by comparison of factors, �2 ¼ �� 1 ðmod TÞ

(corresponding relations can be deduced for other powers of

� in a similar fashion). In a general notation, the cycle with

seed value Z1 ¼ 1 is given by ð1��2 �3 �4 �5Þ ðmod TÞ with

�6 � 1 ðmod TÞ. Exploring all difference equations resulting

from equations with distinct N ¼ 0; 1; . . . ; 5 yields

½1� ð�� 1Þ ð�1Þ ð��Þ ð��þ 1Þ� ðmod TÞ ð24Þ

with the elements of the cycle as the results of the closed-form

solution to the general recurrence formula [equation (21)

together with Z1 ¼ 1;Z2 ¼ �] for hexagonal MCGs:

Znð�Þhex ¼ ð1� �Þ cos

�
n�

3

�
þ

1

31=2
ð1þ �Þ sin

�
n�

3

�
: ð25Þ

The calculation in the square case is analogous, resulting in

ð�0 �1 �2 �3
Þ � ½1� ð�1Þ ð��Þ� ðmod QÞ; ð26Þ

with �4 � 1 ðmod QÞ, and the solution formula for square

MCGs:

Znð�Þsqu ¼ �� cos

�
n�

2

�
þ sin

�
n�

2

�
: ð27Þ

These results allow for simple proofs of the conjectures

regarding the relation between �, � and their respective

sublattice indices T or Q as stated in Hornfeck &

Harbrecht, 2009 (x9): from � � �‘�1 � ��þ 1 ðmod TÞ and

�� � T � � ðmod TÞ follows �þ � ¼ T þ 1 ðmod TÞ for

the hexagonal case, and similarly �þ � ¼ Q ðmod QÞ for the

square one.

A4. MCGs as iterative maps

The action of any given MCG may be presented and eval-

uated graphically employing a Cartesian coordinate system.

Within this reference frame an MCG defined by the congru-

ence y � mx ðmod MÞ is conceived as a piecewise linear

function of the variable x, i.e. a line intersecting the origin,

with a slope given by the multiplier m, which is chopped and

down-projected in steps of the modulus M. For values of x

exceeding the value of the modulus M there is a periodic

repetition, such that it suffices to look at the interval ½0;MÞ in

both axis directions x and y. In order to establish the recursive

behaviour of the mapping and to study its dynamical beha-

viour another linear function is needed, namely y ¼ x with

unit slope. The resulting diagram, where any point on the

abscissa is alternately mapped to a point on the line

y ¼ mx ðmod MÞ (i.e. x 7! y) and afterwards to the line y ¼ x

(i.e. y 7! x0), is known as a cobweb plot.

Cobweb plots are widely used to study and depict the

behaviour of iterative functions and their discrete dynamics in

a graphical, semi-quantitative way (Alligood et al., 1996). One

of the most studied examples is the logistic map (May, 1976)

xnþ1 ¼ rxnð1� xnÞ ð28Þ

where 0< r 	 4, and another well known example is the

Bernoulli map, also known under a plethora of other names,

e.g. as a bit shift map (because that is what effectively happens

if the iterations are written in their binary expansion) or

dyadic transformation

znþ1 � Dzn ðmod 1Þ; ðD ¼ 2Þ; ð29Þ

which is topologically conjugate, via the coordinate transfor-

mation xn ¼ sin2
ð2�znÞ, to the r ¼ 4 case of the logistic map,

where chaos prevails. Both maps are exactly solvable, with

znþ1 ¼
1

�
cot�1 cot 2nþ1�z0

	 
� �
ð30Þ

the analytical expression for the solutions of the Bernoulli

map (Katsura & Fukuda, 1985). The Bernoulli map and its

generalizations with D> 2 are well known for their chaotic

behaviour and it is easy to recognize and establish their

relation to MCGs (Herring & Palmore, 1989; Palmore &

Herring, 1990; Konno & Kondo, 1997).

A simple graphical corollary from this plot is that the

intersection of both functions directly yields the fixpoints of

the mapping whereas any periodic orbit is represented by a

closed trajectory (Fig. 7).

The orbits for integer starting values (seeds) are always

periodic (fixpoints are period-one orbits). For nearby located

seeds a quite distinct behaviour is observed, using the same

MCG as before. Then, one immediately recognizes that the

dynamic behaviour exhibits a sensitive dependence on the

initial conditions (i.e. the chosen seed) which is one of the

telling signs on the way into chaos (Fig. 7). If the seed is

rational the corresponding orbit of the MCG-related iterative

map is eventually periodic (probably with a large period),

whereas an irrational seed yields a chaotic orbit (since the map

in the case of an MCG is piecewise linear the chaotic move-

ment is always ergodic; Konno & Kondo, 1997). This is of some

importance for the approximation of real-structure coordi-

nates by means of MCGs. The sensitive dependence on the

initial conditions is some characteristic feature of iterative

maps and is discussed in detail and in the more general context

of cellular automata for the case of the bit shift map

znþ1 � 2zn ðmod 1Þ by Wolfram (2002, pp. 149–155). A large

body of observations suggests that an arbitrary cellular

automaton (including iterative maps) falls into one out of

only four distinct complexity classes regarding its behaviour

when started from random initial conditions, where class 4

comprises the most complex cases (pp. 231–245). MCGs fit

into this empirical classification scheme as ‘Systems of Limited

Size and Class 2 Behavior’, where class-2 systems are chiefly

characterized by their lack of long-range communication

and their eventually repetitive behaviour (pp. 255–260).

Complexity in these systems arises more by the complexity (or

randomness) of their input, rather than from their inherent

properties (transformation rules of the mapping).
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A5. MCGs and codimension-one quasicrystal approximants

The basic idea behind modular arithmetics is to introduce a

congruence relation defined on the integers Z0 � Z ðmod MÞ,

with Z and Z0 sharing the same remainder after division by the

modulus, i.e. their difference being an integer multiple of M. In

a slightly different view, commonly adopted in computer

science, the congruence relation is interpreted as a functional

relationship, i.e. a modulo operation y ¼ x ðmod MÞ.

Depicted on the number line this may be viewed either as

translational equivalence of integer coordinates with a trans-

lation period M (thinking of a congruence relation), or as a

back-projection of integers into a unit interval, the size of

which is defined by the modulus M (thinking of a modulo

operation). In both cases the modulus M acts as a one-

dimensional translation operation.

The simplest quasicrystals imaginable, the ones exhibiting

one-dimensional quasiperiodicity, may also be depicted on a

number line. In many cases these are derived from the Fibo-

nacci sequence of integers. For such one-dimensional quasi-

crystals explicit coordinates may be given as a closed-form

analytical expression, which establishes a one-to-one corre-

spondence between a set of site coordinates and a set of

indices enumerating the sites according to some ordering

scheme. The same is true for one-dimensional codimension-

one quasicrystal approximants (Mosseri, 1988; Duneau et al.,

1989; Sadoc & Mosseri, 1999; Vidal & Mosseri, 2000). In these

cases, seemingly not noticed before, the expression takes the

appearance of an MCG. This has a subtle advantage, which is

valid for all codimension-one quasicrystals and can be

extended to higher codimensions, in that the MCG’s action

defines a natural ordering scheme for the sites, dubbed as

conumbering before, due to the fact that the site indices

represent distances in the perpendicular space, i.e. distances to

the sublattice nodes, as illustrated in Fig. 8.
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Figure 8
Relation of a Fibonacci chain quasicrystal approximant with a sequence
ðLSLSLÞ1 of short and long distances to (i) a similar sublattice of index
13 with square symmetry, and (ii) an MCG with � ¼ 8 and M ¼ 13.
Shown are the directions of the parallel and perpendicular Euclidean
subspaces for the description of a one-dimensional, codimension-one
quasicrystal and its approximants. The projection window is defined by
the unit cell of the basic lattice, whereas sites of different conumbering
½0; 13Þ are situated inside the unit cell of the sublattice. Note that the sum
of orthogonal distances, adding up bold and dashed lines for a given site
of Ek and along opposite directions of E?, is always equal to a sublattice
translation. Two sites of the same conumbering define the translation
period within the physical space Ek (conventionally the ones with a
conumbering of zero, represented here with filled circles, are chosen as
the origin and its translates).

Figure 7
Top: iterative mapping related to the MCG with m ¼ 3 and M ¼ 7 and
integer seed value Z1 ¼ 1. The mapping can be conceived as consisting of
alternating steps, the first one, x! y (thin lines), describing the action of
the MCG (x ¼ Zn; y ¼ Znþ1) and a second one, y! x0 (thick lines), due
to the recursive nature of the discrete dynamical process. Emphasized are
the fixpoints (0) and (3.5) and the period-six orbit ð1 3 2 6 4 5Þ. Bottom:
iterative mappings related to the MCG with m ¼ 3 and M ¼ 7 and
rational seed values of Z1 ¼ 0:96 (dashed line) and Z1 ¼ 1:04 (solid line).
The corresponding orbits are periodic but with period 60 rather than six,
because 3600:96 � 0:96 ðmod 7Þ. In fact, both starting values describe the
same orbit, since 3100:96 � 1:04 ðmod 7Þ. Nevertheless, starting from
distinct points and examining the trajectories after a limited number of
steps (here six, as compared to the orbit with starting value Z1 ¼ 1) shows
a strong divergence of intermediate values in contrast to the nearby
located seed values.
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